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First this paper describes in detail an apparatus for heat-transport measurements in 
shallow horizontal layers of fluid a t  low temperatures. Then high-precision results of 
convective heat transport as a function of the Rayleigh number R are presented for 
cylindrical cells of aspect ratio L = 2.08,4.72 and 57. The present paper concentrates 
on the long-time behaviour of Boussinesq systems. Non-Boussinesq effects, transient 
effects near the convective onset, and time-dependent states are described elsewhere 
(Walden & Ahlers 1981 ; Ahlers et al. 1981 ; Ahlers 1980b and references therein). The 
measurements show that the convective onset near the critical Rayleigh number R, 
is sharp within the experimental resolution of about 0.1 % of the Nusselt number N ,  
even in laterally finite containers. Values of R,, and of the initial slopes of N ( R ) ,  are 
obtained and compared with predictions for different flow patterns. Over a wider 
range of R and for L = 57 and 4.72, N was found within experimental resolution to 
be a unique, continuous function of R. For L = 2.08, hysteretic transitions are 
revealed by N(R)  near R E 3 and R E 10. For L = 4.72, the effect of impulsive 
heating was studied and revealed complicated, long-lived, but surprisingly repro- 
ducible transients. 
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1. Introduction 
Measurements of heat transport have long been an important tool for the study 

of the Rayleigh-BBnard instability (BBnard 1900, 1901 ; Rayleigh 1916) and the 
subsequent evolution of time-dependent flow states in a shallow, horizontal layer of 
fluid heated from below (Schmidt & Milverton 1935; Schmidt & Saunders 1938; 
Malkus 1954; Silveston 1958; Willis & Deardorff 1967; Krishnamurti 1968, 1970a, b ,  
1973; Rossby 1969; Willis, Deardorff & Somerville 1972; Koschmieder & Pallas 
1974; Koschmieder 1974). All of these measurements have been conducted near room 
temperature, and their resolution generally has been no better than 1 % of the Nusselt 
number. 

We describe in this paper our apparatus and experimental techniques for heat-flow 
measurements a t  cryogenic temperatures, which, depending on the particular circum- 
stances of the experiment, yield a resolution of one part in lo5 or lo4 of the Nusselt 
number. This greatly enhanced resolution makes possible more advanced experiments 
that make close contact with recent theoretical developments in this field. Several 
of the experiments conducted with the apparatus already have been reported 
elsewhere. They include the study of non-Boussinesq systems and of penetrative 
convection (Walden & Ahlers 1981), of transient effects near the convective onset 
(Behringer & Ahlers 1977 ; Ahlers et al. 1981) and of time-dependent flow states (Ahlers 
& Behringer 1978a, b ;  Ahlers 1980b; Ahlers & Walden 1980; Greenside et al. 1982). 
The experimental section of this paper thus provides the foundation for those 
previous publications. 

In addition, we report here the results of Nusselt-number measurements for 
cylindrical cells of various aspect ratios and filled with Boussinesq fluids. We have 
concentrated here on the behaviour of our systems in the long-time limit. But we also 
report on our observations of very complicated, long-lived, but completely 
reproducible, transients that occur when the system is heated impulsively into the 
convecting state. 

Prior to the work described in this paper, the Rayleigh-BQnard problem had been 
studied at low temperatures by Ahlers (1974, 1975, 1980b), by Threlfall (1975), by 
Libchaber & Maurer (1978,1980,1981) and by Maurer & Libchaber (1979, 1980). The 
present apparatus represents a considerable refinement over that used by Ahlers 
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(1974, 1975, 1980a). The low-temperature measurements have several advantages, 
which we will list briefly. 

(i) One can resolve temperature changes of lo-' K, thus yielding a resolution and 
thermal stability 6T/T of about 5 x 

(ii) One can design the apparatus in such a way that any extraneous heat transport 
parallel to the convecting fluid is very small and readily measured. This is because 
of the almost complete absence of heat transport by radiation, and because of 
the great variation in the thermal conductivity of materials at low temperatures. 
Thus the lateral walls of a convection cell can have thermal conductivities of lop3 
to lop5 W em-' K-l. There is also no heat transport by convection or conduction in 
fluid outside the cell, since the experiment is suspended in an extremely good, 
cryo-pumped vacuum. 

(iii) The boundary conditions of uniform temperature a t  the top and bottom plate 
can be approximated extremely well because the horizontal boundary plates can be 
made of copper, which has a conductivity of several W cm-l K-l even a t  T = 2 K. 
For the fluid (liquid or gaseous helium) the thermal conductivity is in the range 
5 x lop5 to 2 x low4 W cm-l K-l. The large ratio between these conductivities results 
in exceedingly small horizontal thermal gradients in the end plates of the cell. 

(iv) The high thermal conductivity of copper, together with its very small heat 
capacity at low temperatures, yields horizontal thermal diffusion times in the end 
plates ( x  s if typical lengths are of order 1 em) that are much smaller than any 
timescale associated with time-dependent phenomena in the fluid flow. Thus, even 
for turbulent flow, the top- and bottom-plate temperatures remain uniform in the 
horizontal plane. 

(v) The extremely small heat capacity of copper compared with that of liquid 
helium makes i t  possible to measure the time dependence of the convective heat 
transport by turbulent fluid flow without significant high-frequency damping due to 
the thermal mass of the container. This can be appreciated readily on the basis of 
the ratio between the heat capacity per unit volume of typical solids at low 
temperatures and liquid helium. This ratio is about Thus even a cell with top 
or bottom plates that are ten times as voluminous as the fluid will have only a small 
damping effect upon the amplitudes of time-dependent processes. A discussion of this 
damping is given by Behringer et al. (1980). 

(vi) The properties of cryogenic fluids provide great flexibility. By judicious choice 
of the operating temperature and pressure for either gaseous or liquid helium, 
convecting systems can be established which are either well represented by or depart 
significantly from the Oberbeck-Boussinesq approximation (Oberbeck 1879 ; 
Boussinesq 1903; Ahlers 1980a; Walden & Ahlers 1981). 

(vii) The investigation of convection in mixtures of 3He and 4He, both normal and 
superfluid, has barely begun (Lee, Lucas & Tyler 1979; Warkentin, Haucke & 
Wheatley 1980) and potentially is a very rich field for the study of a great variety 
of phenomena (Steinberg 1980, 1981 a,  b and private communication). 

Finally, one must recognize also the limitations and disadvantages of the low- 
temperature convection studies. Perhaps the most serious limitation is that  one can 
only study fluids with Prandtl numbers near unity unless one works in the obviously 
difficult range near the phase transitions. The reason for this is that  the transport 
properties of these fluids are well approximated by those of a hard-sphere gas, and 
such a gas has a Prandtl number equal to 5 (Hirschfelder, Curtiss & Bird 1967). The 
second disadvantage is that flow visualization is difficult to  accomplish, and optical 
access to the fluid is not easily obtained. For these reasons, most low-temperature 

when T x 2 K (Ahlers 1971a). 

8-2 
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FIQIJRE 1. Schematic representation of the experimental apparatus. 

measurements have been global measurements of the total heat flux. Local measure- 
ments of the flow are possible, however, and have been made by Ahlers & Behringer 
(1978a), Libchaber & Maurer (1978,1980,1981) and Maurer & Libchaber (1979,1980). 

I n  $2 we describe the cryogenic apparatus and the convection cells in detail. Section 
3 contains definitions of the symbols used in the remainder of the paper, and 
preliminary measurements of properties of the empty convection cells are discussed 
in $4. The procedure used in heat-flow measurements is illustrated in $5. I n  $6, the 
fluid properties and the calculation of Rayleigh numbers are discussed. Our results 
are presented in $7. They fall into several categories. Section 7.1 presents the 
experimental critical Rayleigh numbers for two different aspect ratios. In  $7.2, we 
discuss the rounding near the convective onset, which is always present owing to the 
imperfect bifurcation in real experimental cells. Section 7.3 contains the results for 
Nusselt-number measurements near R,. Comparison with theory of values of R, and 
of the initial slope of N(R) near R, yields considerable information about the 
symmetry of the flow. Nusselt numbers at larger R are presented in $7.4. The 
uniqueness of N(R) is discussed in $7.5, and $7.6 presents the results on transient 
effects due to impulsive heating. 

2. Apparatus 
2.1. General arrangement 

The experiments described below and elsewhere (Behringer & Ahlers 1977; Ahlers & 
Behringer 1978a, b ;  Ahlers 1980b; Ahlers & Walden 1980; Walden & Ahlers 1981; 
Ahlers et al. 1981 ; Greenside et al. 1982) required a system that for periods of up to 
a week permitted continuous automated data taking in the absence of excessive 
mechanical and electromagnetic interference. A schematic diagram of the system used 
by us is given in figure 1. 

A commercially available copper double-walled singly connected shielded room 
contained all parts of the experiment that involved low-level signals and thus 
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provided protection against electrical disturbances. High-level signals could be 
brought into and out of this room by means of coaxial feedthroughs for the purpose 
of interfacing to a digital minicomputer. The computer was deliberately left outside 
the shielded room to avoid possible interference from the high-frequency switching 
of high-level signals that  take place in it. 

Mechanical vibration isolation was provided for the experiment by placing the 
entire cryostat on a bellows-sealed gas suspension system inside the shielded room. 
The effectiveness of this system was determined by measuring the temperature drop 
a t  the bottom of a Rayleigh-BBnard (RB) cell ( x 2 pK for cell A) due to raising 
the cryostat on the suspension system. Typically, the reduction in heat input to  the 
bottom of the cell corresponding to this temperature drop was 8 nW, or 0.4 yo of the 
critical power for the RB instability in cell A. We expect that any residual 
mechanical-energy input to the bottoms of the RB cells was an order of magnitude 
below this level. I n  addition, the vibration isolation system reduces to an extremely 
low level the amplitudes of any mechanical modes that might couple to  the fluid flow. 

I n  order to obtain up to 6 days of data-taking time without interruption for the 
transfer of helium, a Dewar flask with a liquid capacity of about 25 1 was used. An 
automatic data-acquisition system (Wonsiewicz, Storm & Sieber 1978) provided the 
uninterrupted data-taking capability required especially for characterizing time- 
dependent flow states (Ahlers & Walden 1980 ; Ahlers & Behringer 1978a, b ;  Greenside 
et al. 1982). 

2.2. Cryogenic apparatus 

2.2.1. General arrangement. Figure 2 depicts the low-temperature portion of the 
apparatus, which was contained within a vacuum can immersed in liquid 4He a t  4.2 K. 
All tubes entering this portion of the apparatus were baffled against radiation leaks. 
Below the top of the vacuum can was a continuously operating self-regulated 4He 
evaporator (DeLong, Symko & Wheatley 1971) having a volume of 2 em3 and capable 
of maintaining, to within a few mK, a temperature near 1.3 K. Proceeding downwards, 
the next stage was a continuously operating 3He evaporator comparable in size to 
the *He refrigerator. 

Between the 3He refrigerator and the sample chamber was a temperature-regulated 
buffer stage or isothermal platform (Ahlers 1 9 7 1 ~ ) .  By filtering out most of the 
thermal fluctuations in the cooling stages, the isothermal platform provided a stable 
environment for performing high-precision thermal measurements. 

2.2.2. Helium reservoir. A reservoir made of OFHC copper was suspended from the 
isothermal platform by three 095 em diameter x 12 cm long nylon rods. The large 
heat capacity of the helium-filled reservoir served as a sink to help absorb variations 
in the heat applied to the Rayleigh-BBnard cells. The reservoir was made in three 
sections, the middle one containing almost all of the helium and consisting of a series 
of grooves of height 0.51 em and width 008  em, separated by 0.08 em of copper. The 
volume available to the helium was 17.6 em3. All of the liquid was within 0.04 em 
of a copper surface, guaranteeing thermal relaxation times in the reservoir of no more 
than a few seconds. Soldered into the top section was a beryllium-copper strain gauge, 
which served as a pressure transducer (Straty & Adams 1969). Three different 
Rayleigh-BBnard cells were screwed to the bottom section, which was supplied with 
an indium-gasket-sealed capillary connector for each of the three cells. The sections 
of the reservoir were sealed together with indium gaskets, and different experiments 
can be performed with the same apparatus by replacing one or more of the sections. 

The reservoir was filled through a low-temperature valve (Mueller, Ahlers & Pobell 
1976), and all the helium below the valve seat was linked thermally to the reservoir 
by a thick copper braid. 
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FIQTJRE 2. Schematic representation (to scale) of the cryostat. The diameter 
of the vacuum can is 5.75 in. 

2.2.3. Pressure measurement and regulation. A three-lead bridge technique was used 
to measure the capacitance of the strain gauge. Two arms of the bridge were contained 
in a commercial bridge,t one arm was the strain gauge (capacitance = Cg) and the 
remaining arm was a low-temperature standard capacitor (capacitance = C,) 
mounted on the helium reservoir. We could resolve pressure changes of bar over 
a range of 0-30 bar. The zero-pressure change in C,/C, over the temperature range 
1.3-5.4 K amounted to twenty times the gauge resolution, but for practical purposes 
was ignorable. 

The strain gauge was calibrated against a Texas Instruments bourdon gauge,$ 
which had in turn been calibrated against a dead-weight tester. The accuracy of the 
strain-gauge pressures is f5 x 

When liquid and vapour phases were both present in the reservoir, the pressure 
was controlled by regulating the temperature. When only one phase was present, the 
pressure was separately controlled by a ' hot-volume ' technique, as described by 
Mueller et al. (1976). 

bar. 

t General Radio, Co., Concord, Mass, Type 1615A Capacitance Bridge. 
1 Texas Instruments, Inc., Houston, Texas, Model 145. 
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FIQURE 3. Long-term thermal stability of a Rayleigh-BBnard cell when mounted in the 

cryostat shown in figure 2 (cell A). 

isothermal platform, the hot volume and the reservoir there was mounted one 
germanium thermometer,t while each of the Rayleigh-B6nard cells required two 
germanium thermometers, one on either end. Each thermometer was mounted in a 
snug-fitting hole in an OFHC copper post. The leads were heat sunk to the post, and 
around each post were wound two non-inductive reference resistors. By wrapping the 
reference resistors on the thermometer mount, the very small temperature dependence 
of its resistance was automatically incorporated in the calibration of the germanium 
thermometer. A germanium thermometer was paired with one of its reference 
resistors and incorporated in a five-lead bridge (Mueller et al. 1976). The temperature 
resolution of such a bridge depends, of course, on the averaging time, but in much 
of the work to be reported here was about 1 x lo-' K. There were no measurable 
long-term (over, say, a week) drifts, but variations by typically 4 x lo-' K occurred 
with periods of approximately a day. This is illustrated in figure 3. Shown there are 
the temperatures at the bottom of cell A, measured once every six hours, while the 
thermometer at the top of the cell was used to regulate the temperature. For 
comparison, 0.1 yo of the temperature difference corresponding to the critical Rayleigh 
number is 0.6 pK and is shown in the figure. 

The thermometers were calibrated against the 4He vapour pressure scale (van Dijk 
et al. 1960) (T5s). Deviations of our scale from T58 are no more than 1 0 2  mK. 

Temperature regulation was provided by using the appropriate thermometer 
bridge out of balance to activate a temperature controller$ driving a heater. 

2.2.5. Heat leaks. During these measurements the 3He refrigerator was not used, 
and a thermal buss consisting of a thick copper braid was used to link the 3He 
refrigerator thermally to the 4He refrigerator. For rapid cooling of the sample, there 
was a mechanical heat switch between the 3He refrigerator and the helium reservoir. 
Heat leaks of 8 x W K-I between the reservoir and the isothermal platform and 
7 x W K-l between the isothermal platform and the 3He stage permitted 
maximum power inputs to the cells of 0 6 5  x lop3 W and 2.8 x lop3 W at 2.2 K and 
5.4 K respectively. 

2.3. Rayleigh-BCnard cells 
2.3.1. Design and construction. Three different B6nard cells were suspended simul- 

taneously from the sample chamber. In  these experiments the cells were specifically 
designed for high-precision Nusselt-number measurements. Each cell was cylindrical, 
and considerable care was taken to ensure that the departures from ideal geometry 
were minimized without jeopardizing the quality of the cell as an instrument for 
measuring heat transport. Figure 4 shows a cross-section of the cells, and table 1 gives 
the diameter D ,  height d and aspect ratio L = D/2d of the cells. For two of them 

t Cryocal Inc., 5301 Industrial Blvd, Edina, Minn. 
$ Linear Research, P.O. Box 9308, San Diego, CA., Mod. LR-130. 
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Cell A B C D 

D (cm) 2502 1.076 2.502 0926 
0265 0259 0.022 0088 

Sd (pm) 7.6f7.6 15.0f100 150+100 
L 4.72 2-08 57 5.27 

- 
d (cm) 

TABLE 1.  Cell dimensions 

we chose d x 026 cm. A larger value would result in excessively large thermal 
diffusion times, whereas appreciably smaller values of d would result in larger values 
of Sdld, where Sd is the non-uniformity of d .  For cell C we reduced d considerably 
in order to obtain a large L,  and we expect Sdld to  be relatively large in this case. 

Each cell was made by gluing two cylindrical OFHC copper cylinders into a snugly 
fitting stainless steel tube of wall thickness 0015 cm.using Emerson & Cummings no. 
1266 epoxy resin. The walls were sufficiently thin that the majority of the heat 
transport (88 yo for cells A and C and 76 yo for cell B) was through the fluid (see 55.2). 

The gap between the copper cylinders and the stainless-steel tube was no more than 
0001 em. In order to prevent epoxy from flowing into the working part of the cell, 
a ring was cut into each copper cylinder. I n  order to  obtain extra shear strength, brass 
rings of wall thickness 0.015 cm were glued with epoxy to the outside of the 
stainless-steel tube and also to  the cylinders. 

Snug fitting rings made of OFHC copper encircled the stainless-steel tube. Each 
ring and cylinder were screwed to an outer OFHC copper case, and when assembled 
each cylinder extended approximately 0005 cm beyond the corresponding ring. 
Apiezon N grease was used between the rings and the stainless-steel tube to  help 
improve thermal contact. These rings served two purposes. First, they prevented the 
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Radius 

- L -  w 
FIGURE 5. Illustration of the method used to determine the parallelity of the 

cell faces. See text for details. 

thin stainless-steel tube from bulging away from the inner copper pieces, thus 
inhibiting distortion of the cell, and, secondly, they guaranteed that the walls were 
always in good thermal contact with the horizontal boundaries at their junction. In  
order to  measure the change in cell height with pressure there was suspended rigidly 
from each ring one plate of a shielded capacitor. The capacitance between the plates 
was a direct measure of the spacing between the two faces of the cell. 

To avoid perturbing the cylindrical geometry, the fill capillaries did not enter the 
cells in their active portion. Instead, the fluid entered the annulus between the 
stainless-steel wall and the copper cylinder and then seeped into the main part of the 
cell. 

The thermal mass of the copper in the hot end of the BBnard cells was minimized 
in order to minimize damping of temperature fluctuations of time-dependent flow 
states (see Behringer et al. 1980). In the worst case the thermal diffusion time between 
a face of a cell and its thermometer was estimated to be less than lop3 s. 

The non-inductive heaters on the hot ends of the cells had a resistance of about 
5 kQ. The heat created by passing a DC current through these resistances was 
measured by a four-lead potentiometer circuit with an estimated uncertainty in the 
heater power input to  the cells of 0.02 yo. 

2.3.2. Cell quality. The sharpness of the onset of convection depends on the trueness 
of the cell geometry (Kelly & Pal 1978; Tavantzis, Reiss & Matkowsky 1978; Ahlers 
1975; Behringer & Ahlers 1977). We therefore made an effort to  obtain a flat, 
parallel-plate geometry. To obtain uniform, reproducible and unoxidized surfaces, the 
faces of the cells were la ped to a reflecting finish and coated first with 500 of 

were determined with an interferometric technique, and were typically 1 ym. The 
faces were made as parallel as possible by the following procedure, illustrated in 
figure 5 .  For each end of the copper cylinders, the angle p between the flat surface 
and the axis was determined by shining a laser beam at  near-normal incidence on 
the face and then rotating the cylinder in a precision V-block. On rotation, any 
deviation of p from caused the reflected laser spot at a distance L to describe a 
circle of radius r ,  and S = I&r-pl = r / L .  Using these measurements, the cylinders of 
each cell were assembled so as to make the faces as parallel as possible. After the 
assembly, the same laser-spot technique was applied again to the outer ends of the 
cylinders and the relative tilt of the faces was calculated. The corresponding 
variations Sd in the cell height d are given in table 1. 

titanium and then 2000 1 of gold by flash evaporation. The flatnesses of the faces 

3. Definition of parameters 

dimensionless aspect ratio by 
We use d to denote the height and D the diameter of a cell, and define the 

D L E -  
2d ' 
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The temperature, in K, a t  the bottom (hot) end of the cell is T, and a t  the top (cold) 
end it is T,. The temperature difference A T  = T, - T,  will be normalized by its critical 
value AT; a t  the onset of convection to yield 

A T  
A T E -  

AT:.  

The total heat current Q’ = Qk+q’ flowing through a cell consists of the part Qk 
conducted by the walls and the part q’ carried by the fluid. The wall conductance 
I ,  is equal to Q k / A T .  The dimensionless heat flux q carried by the fluid is obtained 
by normalizing by q; (the value of q’ when in a steady state AT = 1 ) :  

The thermal conductivity of the fluid is A, and is given by A = 4q’d/D2nAT’ for 
A T  < AT:. The thermal diffusivity and kinematic viscosity are K = A/pCp and 
v = y / p  respectively. Here p is the density, C, the heat capacity a t  constant pressure 
per unit mass and y the shear viscosity. We define the Prandtl number as 

V 

K 
0. = -. 

The Rayleigh number is taken to be 
g p p  d 3 A T  

R =  ’ 

where Bp is the isobaric thermal-expansion coefficient, and the Nusselt number is 

KV 

where Aeff is the effective thermal conductivity including any heat transport by fluid 
flow. When the system is in a steady state, we have 

( N -  l )R  
= q -  AT.  

Rc 
The timescale will be 

where the time t’ has 

set by the vertical thermal diffusion time, and we define 

t’K t = -  
d2 ’ 

units. 

4. Preliminary measurements 
Before 4He was admitted to the apparatus, the very weak temperature dependences 

of the strain-gauge capacitance and of the cell-spacing capacitors was determined over 
the range 1.3 K 6 T 5 5 K. We also measured the wall conductance 1, for cells A and 
B. For cell C, a meaningful measurement of 1, was not possible because of the small 
value of d.  In  this case, the effective thermal length of the walls changed appreciably 
when the cell was filled. We therefore obtained I ,  by comparing the measured 
conductance of the filled cell with the conductance calculated from the thermal 
conductivity of liquid helium as measured in cell A a t  several temperatures. Since 
the thermal conductivity of liquid helium near but above the superfluid transition 
temperature TA decreases rapidly with increasing T ,  whereas the thermal conductivity 
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of stainless steel increases, this comparison a t  several temperatures yielded both the 
height d and 1, for cell C. 

The thermometers on the helium reservoir and on the top sections of the cells were 
calibrated against the 4He sample vapour pressure, using both an external pressure 
gauge and the strain gauge on the sample chamber over the ranges from 1.3 to 4-5 K. 

Below T,,, the thermal conductivity of the liquid is effectively infinite, and thus 
there is no temperature difference between the top and bottom of a cell. Therefore 
we were able to calibrate the bottom thermometers against the top thermometers 
with extremely high resolution over the range 1-3-2.17 K. The relative sensitivities 
of the top and bottom thermometer bridges were within 1 % of each other and could 
be determined t o  f 0.01 %. The mild temperature dependence of this sensitivity could 
easily be extrapolated to 2-184 K, where most of our measurements for cells A and 
B were made. 

Knowing the sensitivity of the bottom thermometers, we were able to  determine 
the temperature change at the cell bottom which was caused by changing the top 
temperature from just below T,, to the operating temperature near 2.184 K. Since 
there are no thermal gradients in the fluid below T,,, the excess temperature change 
of the cell bottom was attributable to background heat inputs and the finite thermal 
conductivity of the fluid above T,,. The background heating depended upon the power 
dissipated in the bottom thermometers, but typically yielded a A T  of 40 p K  for cell 
A and 100pK for cell B when no heater power was dissipated. The thermal 
conductance of cell C is so large that background-heating effects are negligible. 

5. Procedure 
5.1. General procedures 

During all our measurements, the temperature at the top (cold) end of the cell was 
held fixed by a temperature controller driven by the out-of-balance signal of the 
cold-end thermometer bridge. For the measurement with the fluid at its vapour 
pressure (cells A and B), no pressure regulation was needed. Cell C was used in a 
single-phase region, and, in this case, the pressure was held constant using the hot 
volume described in 52.2.3. 

For cells A and B the cold-end temperature was held fixed at an  operating 
temperature, which was about 12 mK above FA at saturated vapour pressure. Since 
T,, can be determined on our working temperature scale to better than 0.5 x 10+ K, 
the operating temperature was reproducible to f 1 p K .  

Cell C was operated a t  points off the saturated vapour pressure curve because its 
extremely small height d x 0 0 2  ern required a different set of fluid parameters in 
order to initiate convection. I n  this case, the operating temperature was uncertain 
by a few mK and reproducible to k0.l mK. 

5.2. Nusselt-number measurements 

I n  order to test for possible non-uniqueness of the Rayleigh-number dependence of 
N ,  we used two qualitatively different procedures for reaching a steady-state 
Rayleigh number. In  the first, the heat current q was changed discontinuously. Some 
measurements were made by starting with q near zero and discontinuously changing 
it to some value greater than unity. On other occasions, q was varied in small, discrete 
steps. The second method consisted of changing q quasi-continuously by means of 
a ramp. In  that case, 

q =  qo+Pt, 
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FIGURE 6. Typical sequence of heat currents used in Nusselt-number rneasurernents. The 
particular example is for cell B. 

Time (h) (arbitrary origin) 

FIGURE 7 .  Temperature response to the heat current in figure 6 (cell B). 

where the dimensionless ramp rate /3 was usually about equal to  0.01, although larger 
and smaller rates were used also (Ahlers et al. 1981). We will discuss in detail the 
determination of N using the ramp method. 

Figures 6 and 7 represent a typical computer-controlled measurement of N and 
R, using a ramp in the heat current Q' to enter the convecting state. This example 
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is for cell B. In  figure 6, Q' is shown as a function of time. Here Q; is the background 
power due primarily to  dissipation in the thermometer and radiation from 4.2 K. The 
remainder of Q' is computer-generated. The temperature response at the bottom of 
the cell, with the temperature a t  the top held fixed, is shown in figure 7 .  There is 
a AT; caused by Q;, which was measured as described in $4. The thermal conductance 
1, of the fluid in the absence of convection is determined in segment B (figure 6) of 
the measurement sequence, and is given by 

where the wall conductance 1, was determined when the cells were empty (see $4). 
We found that Zw/(Fo+lw) was equal to 0.12 and 0.24 for cells A and B respectively. 
For cell C, this ratio should be about the same as for cell A, but we do not have an 
accurate measurement (see $4). The background power is obtained from 
Q; = ( lo  + I , )  AT;. During segment C in figures 6 and 7, the ramp is used to pass Q; 
and AT:. For the case illustrated, the dimensionless ramp rate dqldt is 0.03, 
corresponding to dQ'/dt' = 2.3 x lop9 W min-l. The conductance 1 in the presence of 
fluid flow is determined in segment D, and is given by 

-1,. QL + Q L  
AT; +AT; 

I =  

Finally, the Nusselt number N is given by l/l,. This estimate of N neglects of course 
any lateral heat flow into or out of the fluid because of any difference in the 
z-dependence of the temperature gradient in the fluid and walls for R > R,. 

Sufficiently near Rc, or for a Boussinesq system a t  any R ,  we have 

R - AT; + AT; 
RC AT: 

= AT. 

- - 

When there are departures from the Boussinesq approximation, there are corrections 
to the last equation (see $6.2). Segments E and F provide a check of the temperature 
measurements in segments A and B. 

The above measurement sequence is typical. The sequence of events can of course 
be changed easily to  yield optimum results for a particular situation simply by making 
software changes. 

6. Fluid properties and Rayleigh numbers 
6.1. Fluid properties 

The operating temperatures of cells A and B were = 2.1841 K a t  saturated vapour 
pressure. I n  that range, the fluid properties have been studied extensively because 
they are of interest in relation to continuous phase transitions. The thermodynamic 
properties can be derived from the measured specific heat (Ahlers 1976), which can 
be represented by 

with A = 5355, B = -7-77, D = 145 and E = 103 J mol-' K-l. The molar mass is 
4.0038 g mol-l, and t" E TIT, - 1,  where T is the temperature in K and TA = 2.1720 K. 
The above equation is adequate to represent C, within 1 yo for TA < T 6 2-3 K. The 
isobaric thermal-expansion coefficient /3, can be obtained from the measured values 

C, = - A  In t"+B+Diln t"+E, (6.1) 
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T 6) 
2 2  
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
5 5  
6 0  
7.0 
8 0  

100 

7;r (YP) 
5 4  
6 2  
7.4 
8 9  

103 
11.6 
12.9 
14.2 
154 
17.6 
19.6 
22.9 

TABLE 2. The viscosity of *He gas at low density 

(Van Degrift 1974) of the expansion coefficient at saturated vapour pressure. The fluid 
density may be regarded constant and equal to 0.1462 g cmP3. The shear viscosity 
(Ahlers 1971b) is well represented by 

9 = qk(l+ 1.92fos1') (6.2) 

with qk = 24.9 pP. Although the dependence upon ;is given quite accurately by this 
equation, the uncertainty in qk is perhaps as large as 10 % and is the greatest source 
of error in Rayleigh-number calculations. The thermal conductivity was measured 
during the course of this work (Ahlers, Hohenberg & Kornblit 1982), as well as 
previously (Ahlers 1976) and can be well represented by the empirical equation 

(6.3) A = A, ;-0'556( 1 + A ,  l0.636) 

with A,  = 37.39 erg s-l cm-l K-' and A, = 40.72. 
Cell C was used near 5.4 K in a single-phase region of density p x 0.05 g omw3 where 

the fluid properties are not known very well. However, we have estimated the Prandtl 
numbers in the following manner. 

We obtained 7 by interpolating between experimental results a t  higher and lower 
densities. The viscosity v0 in the low-density limit has been measured below 4.2 K 
(Becker, Misenta & Schmeissner 1954a, b )  and above 14 K (Becker & Misenta 1955). 

Estimates of q0 based on these data and an interpolation between them are given 
in table 2. Below 6 K, the error due to the interpolation is unlikely to exceed f 0.5 pP. 
For the original viscosity data an accuracy of better than 1 yo was claimed by the 
authors. 

The dependence of q upon the density in the low density limit can be estimated 
from the modified Enskog theory (MET). This theory successfully predicts the initial 
density dependence of the thermal conductivity of gaseous 4He (Ahlers 1978) and is 
also consistent with viscosity measurements for p < 0.015 g cmP3 (Van Itterbeek 
et al. 1953). We have (Hirschfelder et al. 1967) 

(6.4) 1 = 5 (y-l+O.8+0761y+ . . .), 
90 v 

where b, and y can be obtained from the equation of state of the gas. Using the virial 
equation PV B == l+v 
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FIGURE 8. Viscosity of gaseous and liquid helium as a function of density. Data are from Goodwin 
(1968). ---, Modified Enskog theory (MET); -, interpolation between the MET prediction and 
the large-p data. 

with (Keller 1969) 
P B = a+- 
T' 

where a = 2305 cm3 mol-*, P = -421-17 cm3 K mol-l, we obtain 

a Y'T' 

Thus 

where 

01 L= 1+0*8-+0*761 
7 0  V 

= 1 +461p+25*2p2+. . ., (6.9) 

g ~ m - ~ .  
4.0038 

P ' T  

The corresponding prediction for v-vo is shown as dashed lines in figure 8 for 
T = 4 2  K and 55 K. 

We do not expect the MET to be adequate to predict 9 at densities as high as 
005  g and we therefore use the viscosity data at liquid densities to estimate 
departures from the MET. Results for large p are available for T 5 4.2 K (Tjerkstra 
1952; Goodwin 1968) and some of the results from Goodwin (1968) are plotted as 
individual points in figure 8. The excess viscosity 7-7, is only a weak function of 
temperature and primarily dependent upon the density. We thus expect that the 
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Cell A 
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2.1841 
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C 
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TABLE 3. Fluid properties 
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results for T 5 4.2 K that are shown in figure 8 also represent the viscosity adequately 
near 5-4 K, and interpolate between the MET prediction and the high-density data 
as shown by the solid lines in the figure. At the densities of interest this procedure 
probably does not result in errors larger than 1 ,UP. 

In order to obtain an estimate of the thermal diffusivity K at the temperature and 
density used with cell C ,  we measured the thermal diffusion time of cell A using 
thermal gradients that yield gravitationally stable density gradients. This was done 
by raising T, by an increment 6T2 as quickly as possible and by measuring the 
subsequent thermal relaxation of z. For a step in when t = 0, we expect A T  for 
a laterally infinite system to respond according to 

(6.10) 

where 7 = 4 d 2 / n 2 ~ .  We have not solved the heat-flow equation for a finite system with 
lateral boundaries, and for the finite system the behaviour might be slightly different. 
However, we found that the data with t‘ 2 T could be fitted extremely well by a single 
exponential in the sum, and that retaining as many as four terms changed the result 
for 7 less than one part in lo4. We tested this method of measuring K on the 
vapour-pressure curve for T 5 4.8 K, where we know K independently. We found that 
the measured values had a precision of 1 yo, but were systematically too low by about 
15 %. We believe this effect to be caused by the thermal mass of the fluid contained 
in the annular groove of the bottom copper plug of the convection cell (see figure 4) 
(the solid material of the bottom of the cell has a negligible heat capacity). We 
corrected the measurements near 5.2 K for this systematic error but none the less 
regard the determination of K as uncertain by perhaps as much as 10 yo. Thus our 
overall accuracy for the Prandtl numbers for the fluid used in cell C is not better than 
about 20 %. 

The fluid properties at the operating temperatures and densities of the cells are 
summarized in table 3. 

Properties of 4He at saturated vapour pressure have been reviewed recently also 
by Barenghi, Lucas & Donnelly (1981). 

6.2.  Rayleigh numbers 

The Rayleigh numbers for cells A and B deduced from the. measured A T  and the 
fluid properties discussed in 36.1 have an uncertainty of about 10 yo, primarily 
because of the uncertainty in 7. For cell C we do not know the fluid properties well 
enough to  warrant calculating R at all. We therefore present most of our results as 
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a function of AT. For a Boussinesq system, this parameter is equal to  RIR,. For a 
system with mild departures from the Boussinesq approximation, the small difference 
between RIR, and AT can be calculated from the fluid properties. I n  this case, it 
is best to choose the static temperature a t  the half height of the cell as a reference 
temperature To for calculating RIR,, because then R, and the initial slope of the 
Nusselt number as a function of R do not depend upon departures from the 
Boussinesq approximation to first order (Busse 1967 a ;  Ahlers 1980a; Walden & 
Ahlers 1981). I n  our case, the thermal conductivity was always essentially constant 
over the small temperature range between T, and TI,  and therefore To = &(T,+T,). 
Thus we have 

(6.11) 

where T,, is the value of T,  when AT = 1 .  For the temperature used with cells A and 
B, the experimental values of the fluid properties yield 

= AT( 1 + 0.0305e’ - 3.8 x 10-4e’2) 
R - 
RC 

(6.12) 

for AT 5 15. Here e’ = AT-1. 
Departures from the Boussinesq approximation can be expressed in terms of a 

parameter Q defined by Busse ( 1 9 6 7 ~ ) .  For cells A and B, Q = -0.20 when AT = I ,  
and previous work on non-Boussinesq samples (Ahlers 1980a; Walden & Ahlers 1981) 
indicates that  the results for such a small value of Q should correspond to  the 
Boussinesq system. 

7. Results 
7 .1 .  Critical Rayleigh numbers 

The temperature differences AT; at  onset of convection were determined by 
measuring the Nusselt number N in the vicinity of the convective onset. Either a 
graphical extrapolation of N for AT > AT;, or a least-squares fit as described in $7.3, 
yielded AT; with high precision. We found 

for cell A, and 
AT; = 599.6 f 4 p K  

AT; = 676.2 f 8 ,uK 

( 7 . 1 ~ )  

( 7 . 1  b )  

for cell B. The uncertainties are due almost entirely to the uncertainty in AT: (see 
figure 7),  which is caused by variations in the small background heating. The values 
of the critical Rayleigh numbers R,, calculated a t  the horizontal midplane of the cells, 
are 

for cell A. and 
Re = 1599f240 

RF = 1694+250 

( 7 . 2 ~ )  

(7.2b) 

for cell B. The uncertainties in R, are due primarily to uncertainties in the Auid 
properties (especially in the viscosity) and to a lesser extent to the cell height d .  The 
ratio RFIRe is known much more accurately because it contains error contributions 
only from AT: and from d .  Thus 

RB 
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For cell C, which was operated near 5 K and a t  densities near 0 0 5  g AT; 
depended sensitively on the precise density and temperature. We do not know the 
fluid properties well enough to calculate Rayleigh numbers in that region of the phase 
diagram. 

For a laterally infinite system with rigid, perfectly conducting upper and lower 
boundaries, we expect RF = 1708 (see e.g. Chandrasekhar 1961). But for the finite 
system R, > RF and depends upon L, the symmetry of the convective flow pattern, 
and the boundary conditions at the lateral walls. For our cells, numerical estimates 
(Sparrow, Goldstein & Jonsson 1964 ; Nield 1968 ; Steinberg, private communication) 
show that the upper and lower boundaries may be considered as perfect conductors. 
For the lateral walls, three types of boundary conditions have been explored 
theoretically. Brown & Stewartson (1978) considered the case of so-called ‘imperfectly 
insulating ’ sidewalls corresponding to walls of non-vanishing conductivity and 
imperfect thermal attachment to the top and/or bottom plate. This case leads to 
lateral heat flow even in the absence of convection and therefore results in an 
imperfect bifurcation. Our walls are thermally well attached (see $2.3.1), and we find 
that the convective onset is sharp (see $7.2). Therefore the boundaries of Brown & 
Stewartson’s case do not pertain to our experiment. The other two cases correspond 
to walls that are thermally well attached at the top and bottom plate but have either 
zero or infinite thermal conductivity. They are referred to as ‘insulating’ or 
‘conducting’ sidewalls, and both have been used in the calculations by Charlson & 
Sani (1970, 1971, 1975). The real system is, of course, always an intermediate case, 
and the appropriate boundary conditions have been discussed by Cross et al. (1983) 
(see their equations (B 7)  and (B 8)) and by Cross et al. (1980). For any of these cases, 
a sharp bifurcation is expected a t  R, ; but calculations of R, have been carried out 
so far only for the two extremes (Charlson & Sani 1970). The results indicate that, 
for our aspect ratios, the value of R, is not very sensitive to the nature of the 
boundaries. The initial slope of the Nusselt number (Charlson & Sani 1975), however, 
differs a lot for the two extremes. The insulating case agrees with the measurements 
(see $7.3) remarkably well, suggesting that the real walls are closer to ‘insulating’ 
than to ‘conducting’. Therefore we shall compare our data with the calculations for 
insulating walls. 

For insulating walls, R,(L) has been obtained numerically by a variational 
calculation for axisymmetric flow (Charlson & Sani 1970), and for non-axisymmetric 
flow with radial nodes (Charlson & Sani 1971). For axisymmetric flow, 
R,(472)  = 1734 and R,(2.08) = 1840. But the variational calculations for non- 
axisymmetric flow (Charlson & Sani 1971) indicate that the critical Rayleigh numbers 
for certain non-axisymmetric states are not much different (the stability of non- 
axisymmetric solutions has been investigated only to a very limited extent : see 
Charlson & Sani 1975). Clearly the experimental uncertainties in Re and RF are so 
large that the measurements cannot distinguish between RF and the calculations for 
the finite system. However, the ratio RF/Rt is more accurate and in remarkably good 
agreement with the variational calculation, which yields 1.061, with uncertainties, 
however, that are hard to estimate. The calculated values of RJL)  for L 5 3 are also 
in good agreement with the experimental values of Stork & Muller (1975), which were 
obtained with essentially insulating sidewalls (note that Stork & Miiller’s h is equal 
to  2L). Our investigation thus extends the comparison with the variational 
calculations to  larger L. 

The increase in R, due to the lateral boundaries can also be calculated from the 
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FIQURE 9. Critical Rayleigh numbers as a function of aspect ratio L. 0 ,  Charlson & Sani (1970), 
axisymmetric flow with finite centre amplitude and conducting side walls; -, Ahlers et al. (1981), 
axisymmetric flow with finite centre amplitude; ---, Ahlers et al. (1981), straight rolls; ----, 
Ahlers et al. (1981), concentric rolls with vanishing centre amplitude; 0, experimental result for 
RF/R:, normalized to the solid line at  L = 4.72 (cell A). 

amplitude equation (Ahlers et al. 1981) for the lowest mode that contributes to the 
shape of the convective flow immediately above R,. That equation yields a shift 

R, - Rp 
Ec = 

R? 
(7.4) 

that depends upon the symmetry of the convective flow. For the case of cylindrically 
symmetric flow with a finite amplitude at the centre of the cell, one has 

where 6; = 0148. This prediction, in the form of R,(L), is shown as a solid line in 
figure 9. Also shown, but as solid circles, are the calculations by Charlson & Sani (1970) 
for conducting lateral walls (insulating walls give results that  are non-monotonic in 
L and slightly lower a t  some values of L :  see Charlson & Sani 1970). These results 
correspond to finite amplitudes at the cell centre, and thus should be directly 
comparable with the prediction (7.5). The agreement is seen to be excellent for all 
L >, 2. A priori one would have expected some discrepancy for small L ,  because the 
amplitude equation is based upon the assumption of slow spatial variations and 
therefore strictly applicable only for large L. 
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The amplitude equation has the virtue that it can be applied relatively easily to 
a number of flow symmetries. Thus, it has been suggested (Brown & Stewartson 1978) 
that the amplitude at the centre of a cylindrically symmetric flow vanishes if L is 
sufficiently large. For that case, one obtains (Ahlers et al. 1981) 

a shift that is four times larger than the shift for a finite amplitude a t  the centre. 
This prediction is shown as a dash-dotted line in figure 9. Finally, the experiments 
of Stork & Muller suggest that  the stable flow pattern for their ratios L < 3.2 and 
insulatingwalls consists of straight, parallel rolls (see also Kirchartz et al. 1981). For 
that case, one obtains from the amplitude equation 

1.1 8n2C 
4L2 . E ,  = (7.7) 

This is shown as a dashed line in figure 9, and is numerically so similar to the case 
of concentric rolls with finite centre amplitude that at present we cannot hope to 
distinguish experimentally between these two cases. 

The experimental values (7.2a, b )  of R, do not distinguish between the results 
summarized in figure 9, except for the value of R, for L = 2.08 (7.2 b ) ,  which disagrees 
with the prediction for concentric rolls and zero centre amplitude. Although a priori 
we do not expect the amplitude equation to be accurate for small L,  the success for 
the case of finite centre amplitude suggests that the comparison between experiment 
and the result (7.6) may be valid, and that a concentric flow pattern with zero centre 
amplitude did not exist in the L = 2.08 cell. This would be consistent with the 
expectations based on the work of Brown & Stewartson (1978), which suggests that 
the centre amplitude for cylindrically symmetric flow should grow with decreasing 
L as (In A)-;. 

A more sensitive comparison between theory and experiment can be obtained with 
the ratio (7.3). Normalizing R,(472) to the results of Charlson & Sani (1970), and 
(7.3), yield the open square in figure 9 for R,(2-08). That result is consistent with 
either cylindrically symmetric rolls and finite centre amplitude, or with straight and 
parallel rolls. 

7.2. Sharpness of the convective onset at R, 
The onset of convection in ideal, flat, horizontal fluid layers is expected to be sharp, 
even if the layer is of finite lateral extent. Nonetheless, early measurements in cell 
D (see table 1) revealed some rounding of the Nusselt number N(R)  near R, (Ahlers 
1974, 1975, 1 9 8 0 ~ ) .  Some of those data are shown in figure 10 as open circles. They 
yield N(R,) - 1 x 0-03. The rounding could be caused for instance by a non-horizontal 
alignment of the fluid layer, by non-parallelism of the top and bottom plates, or 
by lateral heat flow into imperfectly insulating sidewalls (Daniels 1977; Hall & 
Walton 1977; Reiss 1977; Brown & Stewartson 1978; Kelly & Pal 1978; Tavantzis 
et al. 1978). Cell D was not as carefully constructed as cells A, B and C, and its height 
d may have been non-uniform by as much as 3 %  (Ahlers 1978). Cells A and B are 
believed to have fluid-layer thicknesses that vary by only 03+0-374 (see table 1 ) .  
Results for cell A are shown in figure 10 as solid circles. They reveal a transition that 
is an order of magnitude sharper than the transition for cell D, with N(R,) - 1 z 0.002. 
A more detailed plot of the data for cell A is shown in figure 14 of Ahlers et al. (1981). 
Results for cell B ( L  = 2-08), although not shown in figure 11,  showed a convective 
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onset nearly as sharp as that  for cell A. Since all of the cells had rather similar walls, 
made of thin stainless steel, and, since the horizontal alignment was equally good for 
all of them, we conclude that the rounding in cell D was caused primarily by variation 
in the height of the fluid layer. 

Cell C ( L  = 57) had a much smaller height (table 1 )  than cells A and B. Therefore 
the same degree of parallelism of the top and bottom plates corresponded to a 
greater relative variation in the cell height. Indeed, the rounding near R, was an order 
of magnitude greater than for cells A and B, and about equal to the rounding of cell 
D. Data for cell C are shown in figure 10 as open squares. 

The very small rounding in cell A (which is only slightly larger than the 
experimental resolution) has been compared (Ahlers et al. 1981, figure 14) with the 
rounding that would be produced by a small inhomogeneous term in the amplitude 
equation for the evolution of convective flow. An inhomogeneous term, either 
deterministic or stochastic in character, of the size needed to explain the timescale 
for the convective onset when R is swept through R,, is also adequate to  explain the 
rounding for cell A. 

7.3. Nusselt numbers near R, 
Measurements very near R, were particularly difficult because of the slowness of 
approach towards a steady state (for this critical slowing down see Behringer & Ahlers 
1977). For cells A and B, they were made under full computer control, with the 
sequence of events for each ‘point’ as shown in figures 6 and 7 .  The temperature 
difference with zero applied power, and the thermal conductivity with AT x 087, 
were determined before and after each measurement to  minimize effects of drifts and 
maximize the precision. A slow ramp, dqldt z 2 x lop2, in heater power was used, 
starting at AT x 087, to enter the convecting state. Upon reaching the desired power, 
that  power was maintained for two to five hours (depending upon the closeness of 
R,) and the evolution of the temperature difference was monitored. 

For cell C, measurements were relatively easier because of the smaller vertical 
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thermal diffusion time. In addition, the larger ‘rounding’ near R, (see $7.2) made 
measurements very near R, meaningless. Most of the measurements for cell C were 
made manually, by increasing or decreasing q in small steps. 

Theoretical predictions for the convective heat transport are often presented in 
terms of the initial slope N ,  of N near Re. In  order to obtain objective experimental 
values of N,,  we fitted data to the equation 

with 

k 

i - 1  
N-1 = x NiCi 

(7.9) 

In these fits, the coefficients Ni and the critical Rayleigh number R, were least-squares 
adjusted. 

Equation (7.8) was usually truncated at k = 2 or 3. In order to assess the effect 
of this truncation, we fitted the data also to the equation 

( N - l ) R  
= x Rid. 

RC 2-1 

(7.10) 

In the absence of truncation errors we would expect 

RI = N, ,  (7.11a) 

(7.11b) R2 = Nl + N 2 ,  

R3 = N2 + N3. ( 7 . 1 1 ~ )  

Thus we regard any difference between Nl and R1 as an indication of systematic errors 
due to the finite number of terms in (7.8) or (7.10). 

In order to indicate the quality of the fit, we also present in each case the standard 
error 

n-k-1 
(7.12) 

Here n is the number of data points. 
Our final estimates of N ,  for all cells, as well as for data obtained by Koschmieder 

& Pallas (1974), together with somewhat subjective estimates of their uncertainties, 
are given in table 4. We now discuss in detail how these results were obtained. 

7.3.1. Cell B ( L  = 2.08). Typical results for the dimensionless convective heat 
transport q - A T  during the period of steady heating after the ramp are displayed 
in figure 11. The time origin for this figure is at  the beginning of the ramp, although 
the ramp period is not shown. The time span covered by the figure corresponds to 
about 2g h. For relatively small q -  A T ,  such as for the data labelled ( A ) ,  q -  AT has 
attained a value that is constant within experimental noise a t  rather early times. This 
steady-state value is equal to ( N -  1)  RIR,. For larger q -  AT the temporal evolution 
of q -  AT is more complicated. A plateau forms for t 2 10; but this corresponds to 
an unstable state, labelled (a ) ,  which with increasing time decays in favour of state 
( b ) ,  which has associated with it a larger convective heat transport. As can be seen 
from figure 11,  the lifetime of state (a )  decreases as q -  A T  increases, but the data 
are not good enough to make a more quantitative statement. Even when state ( a )  
is unstable, it is still possible to obtain ( N -  1) RIR, for state (a )  by using the value 
of q -  A T  in the plateau region. The long-time limit of q -  AT gives ( N -  1)  RIR, for 
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Cell L Nl 
B (a) 2.08 036 f 0.04 

A (unstable) 4.72 056 f 0.06 
A (stable) 4.72 083 f 0.02 
D 5.27 096 f 0.06 
C 57 1.25 f 0.05 
K + P  13 1.3 & 0 3  

B (b )  208 035 

TABLE 4. Initial slopes of the Nusselt number N ( R )  (see (7.8)-(7.11) 

0.05 

0.04 

c-. 7 0.03 
h. 

0.02 

0.0 1 3 

FIGURE 11.  The convective heat transport q- AT as a function of time for cell B. Note the 
intermediate state (a), which decays to state (b) for large t .  

state ( b ) .  From a large number of measurements as described above we determined 
that state (a)  is unstable and decays to state ( b )  for R > 1-04 R,. For smaller R, the 
difference between q-AT for the two states becomes too small to be measurable. 
Thus, we assumed initially, and cannot rule out, ' that state ( b )  is the result of a 
bifurcation at R, x 1-04R,. Further analysis of the data, to be discussed below, 
suggests, however, that state ( b )  is stable for all R > R,, and that the difference in 
q-AT for states (a )  and ( b )  vanishes a t  R, as c2 and becomes of the same order as 
the experimental resolution for c x 0.04. The Nusselt-number results for states ( a )  
and ( b )  are shown in figure 12. 

We investigated the effect of the ramp rate ,8 = dq/dt that was used to enter the 
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RIRc 
FIGURE 12. Nusselt numbers for cells A and B near the convective onset. 0, Cell B, state (a) (see 
figure 1 1 ) ;  a, cell B, state (b) (see figure 1 1 ) ;  a, cell A, stable state (also shown in figures 10 and 
13 for comparison) ; -, prediction for laterally infinite system (Schliiter et al. 1965) ; ---, Charlson 
& Sani (1965) for L = 2-25, concentric rolls with finite centre amplitude. 

convecting state by varying p over the range 0.01-0.045. This was done with a final 
power level that  yielded q- AT = 0.060 and state ( 6 ) .  The ramp rate had no influence 
on q-AT in the final state. However, when p was very small, the plateau 
corresponding to  the unstable state (a )  was not observed. Instead, the shape of q- AT 
during the ramp revealed that  ( a )  was decaying to ( b )  prior to  attainment of the 
steady-state power level. 

I n  figure 12, we compare the measured values of N with those calculated by 
Charlson & Sani (1975) for axisymmetric flow with non-conducting lateral walls and 
L = 2.25 (dashed line). The agreement of the state ( a )  data with the theory is 
excellent, with the small systematic difference of about 0.002 in N possibly caused 
by a slightly incorrect choice of Re for the experimental data. Therefore, it appears 
very likely that an axisymmetric flow, with finite centre amplitude, evolves initially 
in our cell B. But  at a later time i t  decays in favour of a state of different and 
presently unknown symmetry. Charlson & Sani, to  a limited extent, examined the 
stability of their axisymmetric flow, and under the conditions that they investigated 
found it  to become unstable for R > (1-04 to 1.1)  R,. 

The decay of our state ( a )  is also consistent with the observation made of 
non-axisymmetric flow by Stork & Muller (1975) in systems of similar aspect ratio. 
It agrees even more dramatically with the recent observations by Kirchartz et al. 
(1981). These authors found, for L x 3, that  a circular flow pattern with finite centre 
amplitude evolved initially when the convecting state was entered relatively rapidly. 
This pattern decayed to a non-centrosymmetric one at large times and under 
stationary external conditions. However, the experiments of Kirchartz et al. were 
performed a t  rather larger ramp rates and equilibration took place a t  rather larger 
values of R. Our measurements suggest that  the unstable (presumably circular) state 
always forms first, even when the convecting regime is entered at very small ramp 
rates; but for small ramp rates the decay occurs a t  very small values of R- Re and 
possibly during the duration of the ramp. 
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Fit 
no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

Emax 

0 1  
0 1  
0 1  
0 1  
028  
028  
0 1  
0 1  
0 1  
01  
028  
028 
05 
0 5  
0 5  
0 5  
1.0 
1 .o 
05 
0 5  
0 5  
0 5  
1 .o 
1 .o 
1 .o 
1 .o 

Equation 

(7.8) 
(7.10) 
( 7 4  
(7.10) 
(7.8) 
(7.10) 
(7.8) 
(7.10) 
(7.8) 
(7.10) 
(7.8) 
(7.10) 
(7.8) 
(7.10) 
(7.8) 
(7.10) 
(7.8) 
(7.10) 
(7.8) 
(7.10) 
(7.8) 
(7.10) 
(7.8) 
(7.10) 
(7.8) 
(7.10) 

N ,  or fl, 
0348, 13 
0389, 14 
0363, 70 
0361, 80 
0372, 60 
0321, 90 
0789, 6 
0873, 6 
0827, 22 
0830, 24 
0820, 6 
0829, 6 
0816, 9 
0837, 12 
1.124, 46 
1.244, 64 
1.187, 40 
1.267, 60 
1.202, 14 
1.348, 19 
1.262, 56 
1.284, 82 
1.259, 12 
1.361, 18 
1.223, 240 
1.349, 390 

N ,  or fl, 
O* 
O* 

-012, 60 
023, 60 
051, 13 
1.12, 14 

O* 
O* 

-0.36, 21 
041, 22 

-021, 3 
0 5 3 , 3  

-022 ,2  
046, 3 

-047, 8 
0 2 2 , 9  

-066, 10 
023, 13 

-062, 3 

-085, 22 
026 ,27  

-086, 3 
000,4 

-079 ,47  
001, 63 

0 3 7 , 3  

N3 or fl, 
O* 
O* 
O* 
O* 
O* 
O* 
O* 
O* 
O* 
O* 
O* 
O* 
O* 
O* 
O* 
O* 

018, 6 
-009, 8 

O* 
O* 

-026, 31 
026, 25 

030, 3 
003, 3 
025, 27 
001, 36 

1 0 3 ~  

1.3 
1.4 
1.3 
1.4 
3.4 
3.9 
0 9  
0 9  
0.8 
0 9  
0 9  
1 .o 
2 3  
30 
4 2  
5.2 
3.8 
5 3  
1.1 
1.4 
1.1 
1.4 
1 -0 
1.4 

11.8 
1 6 5  

n 

14 
14 
14 
14 
36 
36 
46 
46 
46 
46 
63 
63 
77 
77 
23 
23 
30 
30 
22 
22 
22 
22 
28 
28 
15 
15 

TABLE 5. Least-squares fitted parameters of (7.8) and (7.10); * indicates parameter held fixed 

For comparison, we show in figure 12 as a solid line the prediction of Schluter, Lortz 
& Busse (1965) for the laterally infinite system. 

A least-squares fit of the data for state ( a )  to (7.8) and (7.10) yielded the results 
in the first four lines of table 5. In each case, we used data with B > crnin, Emin = lop2, 
in order to avoid data affected by rounding near R, (see $7.2). On the basis of these 
fits, we conclude that N, = 036, with an uncertainty of perhaps 10 %. This result 
agrees well with the value 035  obtained by interpolating between the results obtained 
by Charlson & Sani (1975) for L = 1 and 2.25 and insulating sidewalls. Charlson & 
Sani also found that N ,  < 0. Whereas our data for state ( a )  are consistent with that, 
our uncertainty for N ,  is rather large because state ( a )  exists only for small e,  where 
c2 is very small. Charlson & Sani’s (1975) calculations of N, for conducting lateral 
walls yield Nl w 0.78 for our L, and thus differ appreciably from the experimental 
results for either state ( a )  or state ( b ) .  

All four of the fits for state ( a )  yielded values of R, in the range 168Sk2. 
For state ( b ) ,  there are no data with E < 004 that can be distinguished from state 

(a )  data. For that reason an analysis with em,, = 0.1 would have included too few 
data points to be meaningful. Thus we used emax = 0.28. The results are listed as fits 
5 and 6 in table 5.  We obtained values for Nl that are very similar to those for state 
( a ) ;  but N ,  is considerably larger than zero, and N ( R )  curves upwards. The values 
obtained for R, are in the range 1680L-10, consistent with R, for state (a) .  The 
analysis therefore suggests that states ( a )  and ( b )  have the same R,, but differ in 
convective heat transport by a term about equal to 0.6B2. As mentioned above, we 
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RIR, 
FIGURE 13. Nusselt numbers for cell A near the convective onset. 0, Unstable state; 0 ,  stable 
state (see also Ahlers et al. 1981). The solid and dashed lines are straight and have slopes 0.83 and 
056 respectively (see table 4). 

cannot distinguish between this interpretation on the one hand, and state (b)  arising 
as a result of a bifurcation near R, x 1*04Rc on the other. 

Lastly, let us remark that in a preliminary publication (Behringer & Ahlers 1977) 
we quoted Nl x 048. At that time, we had indications of complicated behaviour for 
cell B, but were unaware of the existence of two states, because our data had more 
scatter. The quoted value for N ,  was the result of a straight-line fit to data primarily 
for state ( b ) ,  and with E 5 0-2. Our more precise data for state ( b ) ,  when analysed in 
the same way, give a similar result (cf. figure 12). 

7.3.2. Cell A ( L  = 4.72). The time evolution of the convective heat transport in cell 
A has been discussed in great detail by Ahlers et al. (1981). For this cell, an unstable 
state forms initially and decays at a later time to a final steady state. Results for 
N(R) for both the stable and the unstable state are shown in figure 13. The unstable 
state is sufficiently long-lived for N(R) to be measurable only when 2.5 0.04. This 
can be compared with state (a)  of cell B, which was observable for E as large as 0.13 
(see figures 1 1  and 12). Because of the narrow existence range of the unstable state 
for cell A, a detailed analysis of N(R) is not justified, and we simply estimate Nl on 
the basis of the dashed straight line in figure 13. We find N, = 056 & 006. This value 
is consistent with a linear extrapolation of the Charlson & Sani (1975) results for 
concentric rolls with finite centre amplitude as shown in figure 14. An actual 
calculation of N ,  for L near 4.72 would of course be very useful for comparison with 
the experiment. 

The stable state for cell A has been analysed in detail by fitting to  (7.8) and (7.10), 
and the results are given in lines 7-14 of table 5. On the basis of that analysis, we 
conclude that N, = 083 & 002 and N ,  N - 0 3  < 0. The work of Stork & Muller (1975) 
and Kirchartz et al. (1981) a t  somewhat smaller values of L suggests that the stable 
state should consist of a set of parallel, straight rolls. For that flow symmetry, and 
cylindrical boundary conditions, one obtains Nl = 073 from the amplitude equation 
(Ahlers et al. 1981). This is slightly lower than the experiment, but perhaps not 
entirely inconsistent if allowance is made for slight deviations near the walls from 



Heat transport and fluid flow in cylindrical containers 245 

I I I 

I I I 
2 4 6 
Aspect ratio L 

0' 

FIGURE 14. Initial slopes iVl of N(R)  (see (7.8)) as a function of aspect ratio L. + , Charlson & Sani 
(1975), concentric rolls with finite centre amplitude; 0, cell B, state (a); 0, cell A, unstable; 0 ,  
cell A, stable; A, cell D. The dashed line is straight and drawn through the Charlson & Sani results. 

the assumed flow geometry. Alternately, the work of Koschmieder & Pallas (1974) 
suggests that the flow should consist of concentric rolls, but possibly with a vanishing 
amplitude at the centre. For that case, the amplitude equation yields N ,  = 0 8 5 ,  
which is also quite consistent with the experiment. This latter interpretation was 
adopted in the work of Ahlers et al. (1981), although their conclusions are largely 
independent of the assumed flow pattern. As discussed in 3 7.1, it is inconsistent with 
the shift in R, due to the finite geometry. An interpretation in terms of straight rolls 
as observed by Stork & Muller is thus more nearly consistent with all our experimental 
observations. 

For comparison, we have also shown in figure 14 (as an open triangle) the result 
for N ,  of cell D, as reported by Ahlers (1980a). 

7 .3 .3 .  Cell C ( L  = 57). For cell C, there is considerable rounding near R,, as shown 
in figure 10. We therefore excluded all data with c < 0.1 from any data analysis. 
Already in the rounded region, the flow in this cell became non-periodically 
time-dependent (Ahlers & Behringer 1978a, b ) .  To illustrate this, we show in figure 
15 as open triangles and as a function of RIR, the experimentally measured standard 
deviation from the mean of N :  

Here the angle bracket indicates a time average, typically over a two hour period. 
The data near R/Rc = 0 (note the break in the abscissa) represent the instrumental 
noise level of about 2.5 x and provide a baseline to judge whether the fluid flow 
is noisy. Clearly, a t  RIR, = 0-8 there is no measurable fluid noise; but a t  RIR, = 1 
the noise from the fluid already exceeds the instrumental noise level by 20 yo. Also 
shown, as solid triangles, are values of ( N ) .  They show the rounding in the range 
0.9 5 R/Rc 5 1.1 that was discussed in 37.2.  

Time-average measurements of N were made at two different temperatures (5.17 1 
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and 5.444 K, see table 3). They are identified as sets 1 and 2 respectively. The results 
of least-squares fits to (7.8) and (7.10) with emax = 0.5 and 1.0 for the two sets are 
given in lines 15-24 of table 5. They yield N ,  M 1.25, with an uncertainty of about 
+0*05. For the second coefficient we get N ,  x -0.6. Although it is hard to estimate 
the uncertainty in N ,  ( i t  perhaps is not larger than f02), we feel that N ,  is definitely 
negative. 

One might have expected the large-aspect-ratio system to agree with the theory 
for L = 00. For that case, a set of straight rolls and = 3 yields N ,  = 1.431 (Schliiter 
et al. 1965), definitely larger than the experimental result. This difference is of course 
not surprising since our fluid flow is time-dependent and thus cannot correspond very 
closely to  parallel, straight rolls. 

The measurements by Koschmieder & Pallas (1974) in a cylindrical cell with L = 13 
have been interpreted by those authors to yield N ,  = 1.48, in agreement with the 
theory for straight rolls. We have analysed their data by fitting them to (7.8) and 
(7.10), with Emax = 1 and Emin = 0 1 .  For this purpose, we used a combination of data 
(Pallas 1972) taken on oils of viscosity 7 = 100 and 200 cSt (there appeared to be no 
noticeable systematic differences between the two sets of data, and any one set had 
only relatively few points in the range of 6 used). The results are shown in lines 25 
and 26 of table 5. We found that our least-squares fit gave an R, tha t  was about 5 yo 
lower than the value adopted by the original authors, and an initial slope of about 
1.3k0.3. Thus, our interpretation of the Koschmieder & Pallas results does not 
distinguish between the theoretical results (Schluter et al. 1965) for rolls, squares or 
hexagons in a laterally infinite system. 

7.4. Nusselt numbers at larger R 
For cells A and C, N(R) was measured for RIR, 5 24 and R/Rc 5 2.3 respectively. 
Over that range, N(R) increased monotonically, was concave downward, and had no 
singularities that were detectable within our resolution. Representative results are 
shown in figure 16 for R/Rc < 24.  The absence of singularities agrees with earlier 
measurements by Koschmieder & Pallas (1974) and by Ahlers (1974, 1975, 1980~) .  
The results for cell A were similar to, but very slightly lower than, the measurements 
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RIR, 
FIGURE 16. Nusselt numbers over a wider range of Rayleigh numbers 

for cells A (e), D (O) ,  and C (0). 

for cell D that were reported by Ahlers (1974, 1975, 1 9 8 0 ~ ) .  Results for cell D (Ahlers 
1980a) are shown in figure 16 for comparison. 

The behaviour of cell B ( L  = 2.08) a t  large R was much more complicated, and we 
discuss it here in some detail. A series of heat-transport measurements was made for 
R/Rc 5 12, using the manual technique of increasing or decreasing the heater current 
in small steps and waiting for a steady-state temperature difference to be reached 
after each step. Occasionally, the heater current was reduced to zero to confirm the 
absence of drifts in the apparatus. Results of these measurements are shown in figure 
17. Aside from the onset of fluid flow at RIR, = 1 ,  the most dramatic feature 
displayed by the data is the discontinuous decrease in N near AT x 3 .  A second 
transition occurs in the range 8 5 AT 5 9 ,  and has a wide hysteresis loop associated 
with it. Let us first discuss the transition near AT = 3 .  

Upon increasing the Rayleigh number, the system remains in state ( b )  for AT 5 3.  
As can be seen from figure 17, the system then undergoes a transition, which manifests 
itself by a large, discontinuous decrease in the convective heat transport. We shall 
label the new state as state (c ) .  The transition was investigated in detail first by the 
usual technique of applying a constant heat current and measuring the resulting 
temperature difference. These results are shown as solid symbols in figure 18. Upon 
increasing the heat current in small steps while in state ( b ) ,  a power level would 
eventually be reached at which state ( b )  became unstable in the sense that it had a 
finite lifetime and eventually underwent a spontaneous transition to the state of lower 
heat transport ( c ) .  Prior to this transition, it was possible to measure the convective 
heat transport in the unstable state provided that its lifetime was not too short. Since 
the heat current was fixed in this experiment, the transition from ( b )  to ( c )  was 
accompanied by an increase in the Rayleigh number. While in state ( c ) ,  decreasing 
the heat current in small steps would eventually result in a spontaneous transition 
to the high-conductivity state (b ) .  

In figure 18, we have shown all points that were observed to be unstable as squares. 
There is of course no guarantee that the points shown as circles, for which no 
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FIQURE 17. Nusselt numbers over a wide range of Rayleigh numbers for cell B. The results are 
shown as a function of the measured parameter AT, which is related to RIR, by (6.12). 

AT 

FIGURE 18. Nusselt numbers as a function of AT for cell B near the first discontinuous transition. 
Solid symbols are measurements at constant heat current; open symbols are measurements at 
constant AT. m, 0, unstable states for which transitions were observed; 0 ,  0, states for which 
no transition was observed during the duration of the experiment. 

transition was observed, correspond to stable states. Many of them presumably would 
have undergone a transition if sufficient time had been allowed (most of the points 
were taken by waiting 30 minutes at a given heat current). We have indicated the 
range over which instability was observed either for state ( b )  or ( c )  in the figure, and 
presume that all measurements in that range would have yielded the instability if 
sufficient time had been allowed. For the same reasons, it is of course likely that the 
range of instability is in fact wider than indicated in the figure. 
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FIGURE 19. Time-dependent state for cell B at AT = 3.155 (see arrow near abscissa of figure 18). 
AT was fixed, and the time dependence is thus in the heat flux. 

Time (h)  (arbitrary origin) 

It can be seen that the data at constant heat current (solid symbols) for the unstable 
states in figure 18 leave a small region between AT = 3-15 and 3.19 in which it was 
not possible to maintain either state (b) or ( c )  sufficiently long to make a measurement. 
We therefore used the alternative method of holding constant the te'mperature 
difference across the cell and measuring the heat current required to do so. This 
procedure resulted in the open symbols in figure 18. It extended somewhat the range 
over which measurements could be made on the two branches. This procedure also 
revealed the instability of the two branches. However, a t  constant temperature 
difference a transition would require following a vertical path in figure 18. It is clear 
that the transition then is from one unstable state to another unstable state, provided 
that the Rayleigh number is in the range indicated in the figure. The result is that 
the convective heat transport becomes time-dependent. A sample of the time- 
dependence observed at AT = 3.155 is shown in figure 19. We note that the switching 
between the two states occurs on a very slow timescale. The regularity in the pattern 
suggests that  the process is deterministic in character. The extremes in heat transport 
are plotted in figure 18 and identified by a small arrow near the abscissa. They 
correspond closely to the heat transport of states (b) and ( c ) .  

It is interesting to note that the occurrence of time-dependent states at constant 
imposed heat current has been predicted by Busse (1967b) for certain inverted 
bifurcations that yield a heat transport that has a gap as a function of Rayleigh 
number. The present case is different in that i t  occurs at constant imposed 
temperature difference. 

Finally, we note that most of the scatter in figure 18 is not the result of limited 
experimental resolution, but is rather attributable to small deviations of the unstable 
system from a unique state. 

Upon increasing AT beyond 3, the sysl;em remains in state ( c )  for AT 5 10. 
However, near AT = 9, this state becomes periodically time-dependent. For AT > 10, 
state ( c )  becomes unstable, and a new state ( d )  with a slightly larger convective heat 
transport evolves. Upon decreasing AT for state ( d ) ,  a sizable hysteresis loop is 
observed extending down to AT z 8. Upon decreasing AT and near AT = 8, N(AT) 
for state (d )  seems to merge continuously with N(AT) for state ( c ) .  State ( d )  also 
exhibits time dependence over a range of Rayleigh numbers. That time dependence 
has been discussed by Ahlers & Behringer (1978a, b) and by Ahlers (1980b). 

7.5. Uniqueness of N(R) 
Throughout the work on all three cells, we have searched for hysteresis and 
non-uniqueness of the states above R,. I n  addition to the measurements described 
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t ( d Z / K )  
FIQVRE 20. RIR, as a function oft. For the run represented by the first third of the figure, a constant 
heat current q1 was turned on discontinuously a t  t = 0. For the run represented by the rightmost 
two-thirds of the figure, a slow ramp in q was used to reach the same q l .  Both experiments yield 
final states with experimentally indistinguishable convective heat transport. 

in detail above, we have usually made measurements using successive small steps in 
q. Invariably, we found within our resolution (of 0.001 or smaller) the same values 
of N(R),  regardless of whether q was increased or decreased. The only exceptions are 
of course the two hysteretic transitions for L = 2.08, which were described in 57.4. 

For cell A, we unsuccessfully attempted to induce different flow states by using 
different histories for the heat current prior to the steady-state heating period. An 
example is illustrated in figure 20. For the data in the left third of the figure, q was 
changed discontinuously from zero to  some finite value q1 > 1 a t  t = 0. The initial 
fast transients associated with pure thermal conduction have died out for t 2 0(1), 
and the onset of fluid flow decreases RIR, from about 1.36 to  about 1.32 rather 
rapidly. Thereafter, until t M 5 ,  the system passes through various flow states, as 
indicated by the time dependence of RIB,; but for t > 5 i t  settles down in a 
time-independent state, and any noise evident in figure 20 is of instrumental origin. 
Similar experiments, but with q decreased discontinuously from a value larger than 
ql ,  yielded the same R/R, in the steady state within experimental resolution. A third 
history for q is illustrated in the right two-thirds of figure 20. Here, the system was 
equilibrated at qo < 1, and then a very slow ramp in q was used to reach q1 > 1. The 
ramp rate dq/dt was about At the end of the ramp, R/R, immediately attains 
a steady-state value, and that value is equal to the steady-state value obtained with 
the step in q within the experimental resolution of 3 x in RIR,, corresponding 
to about 01  % of the convective heat transport ( N -  1) RIR,. Thus we consider it very 
likely that the final states have the same spatial structure, regardless of history. I n  
this respect, our cylindrical system is different from rectangular convection chambers, 
which seem to permit multistability with states corresponding to different numbers 
of convecting rolls. Our results are in this respect consistent, however, with those of 
Koschmieder & Pallas (1974) for cylindrical cells. 
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FIGURE 21. The dimensionless temperature difference AT as a function o f t  after a heat current 
q1 is turned on a t  t = 0. Note the general similarity in the patterns, but also the change in timescale 
as q1 is varied. The points identified as t,, t, and t ,  are readily distinguishable features of the time 
evolution, and are used in figure 22. 

7.6. Transient effects 
From the results for cell A shown in figure 20, it  can be seen that a step in q from 
qo < 1 to  q1 > 1 induces long-lived, transient, unstable convective states if q1 is 
sufficiently large. We studied the evolution of the convective heat transport in detail 
as a function of ql.  In  each case the step in q was from an initial value qo = 0. Results 
for AT (related to RIR, by (6.12)) a t  several values of q1 are shown in figure 21 for 
t < 50. The origin of the timescale of this figure coincides with the step in q. Repeated 
measurements with the same q1 produced identical results within the experimental 
resolution. There is a steep maximum (off-scale in the figure) near t = 1 that is due 
to the fast transients involved in approaching a steady-state conducting temperature 
profile and the subsequent onset of convection (see also Behringer & Ahlers 1977, 
figure 2). For larger t ,  the temperature difference AT (and thus at  constant q, also 
the convective heat transport q, - AT) evolves in a complicated manner. There are 
several maxima, and we have identified the time of occurrence of three easily 
recognizable features near maxima as t , ,  t, and t , .  As q1 is increased, the overall shape 
of the curves in figure 21 remains largely unaltered; but the timescale of the evolution 
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FIGURE 22. The inverse of 7( = t t - t ,  (see figure 21). where t ,  x 1 is explained in the text. 
all three sets of data cross the AT-axis near 1.16, suggesting that the initially excited 
a convective onset that is higher than that of the final state. 

Note that 
mode has 

becomes shorter. For the origin of that  timescale, we chose the location to of the initial 
large maximum near t = 1, and evaluated 7< = ti - t o .  Figure 22 shows a plot of the 
experimental values of 7;l, 7i1 and 7;l. The data indicate that 

where 

7< = 702-1, 

Z Z  8-0.16. 

Thus the unstable, transient state exhibits the type of slowing down that is well 
known for normal bifurcations; but the value of the critical Rayleigh number for this 
state is larger than R, by about 16%. 

The transient behaviour is shown over an even larger time interval in figure 23. 
For each q l ,  we show two separate experimental runs to demonstrate the extent 
to which the measurements are reproducible. The early parts of these runs have 
similar features, which evolve more quickly at larger q1 (as shown in figure 21). But 
the later parts of the runs show that a ‘steady state’ is reached sooner a t  the smaller 
q l .  As q1 increases, the time evolution of AT becomes more complicated, and therefore 
lasts longer, even though a given feature evolves earlier. At the highest q1 shown (runs 
(9)  and ( h ) ) ,  the fluid flow in the longtime limit is non-periodically time-dependent 
(Ahlers 1974, 1980b; Ahlers & Behringer 1978a, b ;  Behringer et al. 1982), and thus 
the initial evolution of AT becomes non-reproducible after a relatively short time.? 

The results of five nominally identical runs of even longer duration and with 
q1 = 2.93 have been shown by Ahlers & Walden (1980, figure 4). Those measurements 
showed that the reproducibility that is demonstrated in figure 22 extends a t  that  q1 
to times as large as 300t,. Eventually, however, the time evolution of nominally 
identical runs ceases to be the same. We believe that this ‘getting lost ’ is associated 

t Even at  the smaller values ofq,, the flow is non-periodic a t  large time (Walden & Ahlers 1981); 
but the timescale of that non-periodic behaviour is so long that it is not perceptible on the scale 
of figures 21 and 23. 
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FIGURE 23. The dimensionless temperature difference AT as a function of t after a heat current 
q1 is turned on a t  t = 0. These data are over a longer time interval than those of figure 21. For 
each q l ,  two separate experimental runs are shown to demonstrate the extent of the reproducibility 
of even quite complicated evolutions ( e  and f). At sufficiently high ql ,  corresponding to AT 2 2, 
the evolution is no longer reproducible because the system is clearly turbulent on the time-scale 
of these experiments. See also figure 4 of Ahlers & Walden (1980). 
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with the intrinsic time dependence of the flow that exists a t  the Rayleigh numbers 
corresponding to that q1 (Ahlers & Walden 1980). The data of Ahlers & Walden also 
show that the early evolution, although often reproducible, need not be the same in 
every nominally identical experiment. Instead, for five runs, they discovered two 
distinct time histories. Thus i t  appears that  for a given set of nominally identical 
initial conditions there exists a small number of discrete paths to the long-time 
behaviour of the system. 

8. Summary 
In  the first part of this paper, we presented a detailed description of our apparatus 

and of procedures for the investigation of heat transport in shallow horizontal layers 
of fluid a t  low temperatures. The results of several experiments conducted with this 
apparatus have already been reported elsewhere. These include the investigations of 
non-Boussinesq effects on Rayleigh-B6nard convection (Walden & Ahlers 1981 ), of 
the transients involved in the evolution of fluid flow close to the onset of convection 
(Ahlers et al. 1981) and of time-dependent states in convecting fluid layers of several 
different aspect ratios (Ahlers & Behringer 1978a, b ;  Ahlers 1980b; Ahlers & Walden 
1980; Greenside et al. 1982). A brief summary of much of this work is given by Ahlers 
(1980b). 

I n  the second half of this paper, we presented additional results that pertain 
primarily to the behaviour of Boussinesq fluid layers of aspect ratio L = 2-08, 472  
and 57 in the long-time limit. I n  addition, we discuss our observations of complicated, 
long-lived, reproducible transients that  occur when the fluid layer with L = 4.72 is 
heated impulsively to a Rayleigh number well above the convective onset. Our results 
are as follows. 

For L = 2-08 and 4.72, critical Rayleigh numbers R, were determined with high 
precision, but possible systematic errors are as large as 15%. The ratio of R, for the 
two cells is subject to much smaller systematic errors, and is found to be 
RE0s/R%'72 = 1.06 f 0.02. This result is compared with the calculations by Charlson 
& Sani (1970, 1971), the predictions based on the amplitude equation (Ahlers et al. 
1981) and the measurements by Stork & Miiller (1975). It is consistent both with a 
flow pattern of straight rolls and with a cylindrically symmetric pattern with finite 
centre amplitude. It tends to  rule out a pattern of cylindrical symmetry and vanishing 
centre amplitude, such as the one considered by Ahlers et al. (1981). 

Very detailed measurements of Nusselt numbers N ( R )  near R, were made in order 
to study the sharpness of the convective onset. For L = 2-08 and 4.72, any rounding 
of the transition is only slightly larger than the experimental resolution, and 
N(R,) - 1 x An earlier investigation in a cell with L = 5-27 and with horizontal 
plates not nearly ciose to being parallel as those of the present cells (Ahlers 1974,1975) 
had yielded N(R,)  - 1 !z 0.03. The prcsent results show that the onset of convective 
flow can be essentially sharp even in containers of finite lateral extent. The bifurcation 
becomes impcrfcct, however, when the cell spacing in non-uniform. These results 
agree with the theoretical work of Reiss (1977), Kelly & Pal (1978) and Tavantzis 
et al. (1978). From theory, i t  is expected also that the bifurcation should become 
imperfect if the lateral boundaries are 'imperfectly insulating' and there is lateral 
heat flow into the sidewalls even in the absence of convection (Daniels 1977 ; Hall 
& Walton 1977; Brown & Stewartson 1978). Since we see almost no rounding for 
L = 4.72 and 2.08, we conclude that our sidewalls are not imperfectly insulating. 
These results indicate that our attempts to attach the sidewalls thermally to the top 
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and bottom plates (see $2.3.1)  were successful. For the large-aspect-ratio cell ( L  = 57) ,  
the rounding of N ( R )  near R, was much more severe, and N(R,)  - 1 z 0 0 3 .  This cell 
had a much smaller height than the others, and the same variation of the spacing 
between the top and bottom plates corresponds to a greater relative variation of the 
layer thickness, thus explaining the greater rounding. 

The Nusselt numbers N ( R )  above but close to R, were measured in detail for each 
cell, and the initial slopes N ,  = dN/d(R/R , )  just above R, were determined. For 
L = 2.08 and 4.72, an unstable state is created first, even when R,  is exceeded very 
slowly. At large time, this state decays to another convecting state; but it is 
sufficiently long-lived that its initial slope N ,  could be measured. For L = 2.08, we 
found N ,  = 0-36, in excellent agreement with calculations by Charlson & Sani (1975) 
for similar values of L,  insulating sidewalls, and for a state with cylindrical symmetry 
and finite centre amplitude. An unstable state of cylindrical symmetry has been 
observed also by Kirchartz et al. (1981) for L z 3 when in their experiment the 
convecting state was entered fairly rapidly from below R,. For L = 4.72, we found 
N ,  = 0.56 for the unstable state. No calculations are available for this aspect ratio. 
Numerical studies similar to those for smaller L (Charlson & Sani 1975) would be most 
interesting for comparison. For the two cells with L = 2.08 and 4 7 2 ,  the relative 
values of R,, the initial slopes of N and the instability of the initially formed state, 
when compared with theory and the experiments of Kirchartz et al., thus strongly 
support the idea that the fluid Aow initially has cylindrical symmetry with finite 
amplitude at the centre. Since this state decays a t  later times, the stable state is 
presumably not of cylindrical symmetry. For L = 57, we found Nl = 1.25. This value 
is only about 12% less than the theoretical value N ,  = 1.431 for a laterally infinite 
system of straight rolls (Schluter et al. 1965). Since our convecting fluid in this cell 
showed time-dependent behaviour, the pattern almost surely contained many defects 
and deviations from straight-roll flow, and we assume that these irregularities 
account for the slight difference between the theoretical and experimental values of 

For all three cells, Nusselt numbers were measured also at larger R .  For L = 57 
and R 5 2.3RC, and for L = 4.72 and R 5 24 R,, N ( R )  was (within our resolution) 
a unique, smoothly varying and monotonically increasing function of R .  For L = 2.08, 
however, N( R )  revealed two discontinuous transitions with hysteresis, one near 3R, 
and one near 10R,. We assume that these transitions correspond to  changes in the 
symmetry of the flow pattern. 

Particularly for L = 4.72, we searched for non-uniqueness of the state above R ,  
by varying the thermal history of the sample. By heating impulsively on the one hand, 
and by entering the convecting state with a slow ramp on the other, we obtained 
convective heat transport ( N -  l ) R I R ,  near 1*3R, that was the same within one part 
in lo3 .  Thus we were unable to induce measurably different states above R ,  for this 
cell. 

Finally, the last result reported in this paper is the existence of long-lived, 
complicated, but reproducible, transients that  evolve for L = 4.72 when the heat 
current is turned on suddenly. Reproducible, complicated behaviour has been 
observed for times as long as 300 vertical thermal diffusion times. 

Nl . 

The experiments described in this paper were done while the authors were a t  Bell 
Laboratories, Murray Hill, N J  07974. We are grateful to  M. C. Cross and P. C. 
Hohenberg for informative discussions. The work of G. A. was supported in part by 
NSF grant DMR79-23289. 
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